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A stochastic theory is presented for nucleation and growth of clusters in an isolated binary 

system, consisting of a vapour and a neutral carrier gas. WC consider a discrete cluster 

distribution for which the entropy and the equilibrium probability distribution are derived. 

Due to the cluster formation the latent heat of condensation is released which effects an 

increase of the temperature. The influence of the carrier gas on the temperature increase is 

discussed. The isothermal nucleation process is derived as a limit case of the given de- 

scription. 

The cluster growth and shrinkage occurs by the attachment/evaporation of free particles. 

The transition probabilities reflect that the clusters of different sizes cannot evolve indepen- 

dcntly due to the dependence of the temperature and the number of free particles on the 

whole cluster distribution. The discussions shows. that for lower fractions of the carrier gas 

the transition probability of evaporation increases and the probability to find supercritical 

clusters is reduced. The supersaturation is dropped faster compared with the isothermal limit. 

which leads to quantitative changes in the kinetics of phase transition. 

1. Introduction 

Since the end of the twenties many efforts have been done in order to 

develop a complete theory of the formation and growth of clusters in super- 

saturated systems [l-2]. We remember the classical nucleation theory [3-4] 

which is valid for a description of nucleation in an infinite system under 

isothermal constraints. A limitation of the total particle number leads to a 

dependence of formation and growth of clusters on the decrease of free 

particles. In particular, in a supersaturated vapour the formation and growth of 

different clusters is coupled by the vapor pressure and one finds a scenario of 

the phase transition where three stages can be distinguished. 
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This scenario has been discussed both from a deterministic point of view 

[S. 71 and in a stochastic context considering fluctuations [6. 71. The advantage 

of the stochastic approach is a complete description of the nucleation period as 

well as the growth of the supercritical clusters and the late stage of Ostwald 

ripening by a uniform theory. Deterministic theories cannot explain the 

cross-over of the limitation nucleation barrier, which is an intrinsic stochastic 

process [Xl. 

In previous papers (3-71 the condition of a constant temperature was 

assumed; this is realized only under certain constraints. In reality due to the 

attachment of free particles to the clusters the latent heat is released which 

increases the temperature of the system. Therefore it is more realistic to 

discuss nucleation and growth. e.g., under adiabatic constraints where the 

temperature is not constant. as has been done recently 19, 101. 

The prcscnt paper deals with the description of nucleation and growth of 

clusters in an isolated binary system, consisting of a vapour and a neutral 

carrier gas. Due to the cluster formation the latent heat of condensation is 

released which effects an increase of the temperature. WC will show that the 

isothermal nucleation process can be derived as a special case from this general 

point of view. Another limit case derived here corresponds to the nucleation ot 

a pure vapour under isoenergetic conditions. Both cases will be compared with 

respect to the conscqucnccs for the nucleation process. 

For the formation of clusters we use again a stochastic description which 

restricts itself to a mcsoscopic time scale [6, 1 I, 161. That means a scale where 

the microscopic processes are not considered in detail but reflected by small 

changes of the macroscopic parameters of the system (e.g. pressure. tempera- 

ture). The cluster itself is described similar to the classical droplet model [ 11. 

That means it can be characterized by a macroscopic density and surface 

tension. 

2. The general model 

2.1. Model of the isolated system 

In the following we consider a closed and finite isolated system. That means 

a fixed total internal energy U, a fixed system volume V and a fixed total 

particle number N: 

U = const. , V= const. , N = const (3.1) 

The constraints are chosen in such a way that the system exists in a gaseous 
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state. This gas consists of two components: a condensable vapour specified by 

the index “v” and a carrier gas denoted by the index “0”. It is known from 

experiments on vapour condensation that the carrier gas is used to take over 

the latent heat which is released during the condensation process. The carrier 

gas should be uncondensable under the given constraints. The total particle 

number N therefore is divided into the particle numbers of the two compo- 

nents, both being constant: 

N = N,, + N, . P-2) 

Due to interactions between the particles a number of particles of the 

condensable vapour is bound in clusters and a discrete distribution of clusters 

and free particles in the gas exists (see fig. 1). This distribution is described by 

the vector N: 

N = {N,,, N,N, . . N,, N,V,} (2.3) 

N,, is the number of the free particles of the carrier gas, N, the number of free 

particles of the condensable vapour (monomers), N2 the number of bound 

states of two particles (dimers) and so on. Because of the limited number of 

particles it holds: 

N, = c nn,, = const . (2.4) 
,I= I 

II is the number of condensable particles bound in the cluster, the number of 

clusters consisting of n particles is denoted by N,,. For the maximum number of 

0 v 
0 

monomers 
+ . 

+ . c- . . (condensable vapour) 
0 

0 0 -- clusters 
. 

0 l 0 . 

Fig. 1. Sketch of the considered system: We investigate a binary vapour consisting of a carrier gas 

and a condensable vapour where a cluster distribution has been established. The system is isolated. 
the system volume and the total particle number are fixed. 
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clusters it follows from eq. (2.4): 

0~ N,, c N,.lrz (2.5) 

2.2. Equilibrium probability distribution 

From a statistic point of view every possible 

certain probability for a given time, defined by 

distribution N is found with a 

P(N, t) = P(N,,, N,N2 . N,, . N,v,, t) (2.6) 

In a stochastic theory the formation and growth of clusters can be described by 

the change of P(N, t) in time. Let us study first the equilibrium probability 

distribution P”(N). In thermodynamic equilibrium the probability P”(N) to 

find a certain distribution of clusters in the bath of the particles of the carrier 

gas is defined by the following relation [6, 161: 

P”(N) = p”(q, . pjv) dq, dp,v. (2.7) 

C‘(.\’ 1 

Here p”( q, P,~) means the equilibrium probability distribution for the N 

particles in the spatial and momentum coordinates of all particles. For a fixed 

total energy U the microscopic partical configuration is given by the 

microcanonical ensemble, which means [ 181: 

P’Y4, . . PN) = 

, forU-6UsHsU+6U, 
(2.X) 

else 

H is the Hamiltonian of the N particles system and 6U the thickness of the 

energy shell. S(U, V. N) in cq. (2.8) is the entropy of the N particles system 

which is known to be [15] 

S(lJ, V, N) = k,, In 
I 

dR , dO=dq, . ..dq.dp, . ..dph. (2.9) 

The equilibrium probability distribution P”(N) (eq. (2.7)) is defined by an 

integration over a subspace C(N) of the assumed cluster distribution. Inserting 

eq. (2.8) we find from eq. (2.7) 
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S(U, v, N) 
k dq, . . dp, 

U C’(*V) 

(2.10) 

In agreement with eq. (2.9) we introduce now the entropy of the particle 

configuration N by 

S(U, V, N) = k, In 
J 

do (2.11) 

C(N) 

and find the equilibrium probability distribution P”(N) finally in the form 

P”(N,,, N, . NN,) = exp 
S(U, V, N,,, N, N,v,) - S(U, V, N) 

4 
. (2.12) 

where S(U, V, N) = const. acts as a normalization [27] 

3. Thermodynamic investigations 

3.1. Free energy of the cluster distribution 

In order to evaluate the equilibrium probability for the concrete system we 

have to calculate first the entropy S(U, V, N) of the cluster distribution. 

For our derivation we start with the free energy F(T, V, N) for the consi- 

dered cluster distribution in the volume V and at the temperature T. WC 

assume that T is a global parameter which depends on the present cluster 

distribution. The entropy is obtained by means of the relation 

aF(T, V, N) 
S(T,V,N)= ~ aT (3.1) 

I/.\ 

The free energy of the cluster distribution has been derived in a previous paper 

[6, 161 assuming isothermal conditions and an ideal mixture of clusters and free 

particles. It consists of two parts with respect to the carrier gas (F,,) and the 

condensable vapour, including the cluster distribution (F,). We found for the 

free energy: 

= F, + F,, , T, V, N = const. , (3.2) 

where A,, is the de Broglie wavelength, 
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A,, = /1(2rrm,,k,,T)m ’ ’ , (3.3) 

,f,, is a potential term characterizing the energy of the cluster of size n. In a first 

approximation similar to the theory of atomic nuclei which includes only 

volume and surface effects we choose [19]: 

A, = -A(T)rz + B(T),? .‘. 

The first term of eq. (3.4) corresponds 

second term to the surface energy. 

In comparison with thermodynamic 

was derived [20]: 

~‘(7‘) 
A(T) = -k,,T In k~ A;. 

13 

(3.4) 

to the binding energy in the cluster. the 

results the following expression for A 

(3.5) 

p’(T) is the equilibrium vapour pressure of the condensable vapour at the 

given temperature. The surface energy is proportional to the surface area and 

to the surface tension V. Assuming a spherical cluster it yields for the constant 

B [20]: 

(3.6) 

cCY is the particle density in the cluster. Due to the classical droplet model 

presumed here the surface tension u and the particle density are assumed to be 

constant with respect to the curvature. 

We note that the ansatz (3.4) for J;, is valid only for large clusters, where a 

real surface can be distinguished from the inner part of the clusters. It fails 

mainly for small clusters. In particular for monomers f, = 0 must be satisfied. 

We use here the ansatz for L, for YI b 2. mentioning that a proper estimation of 

J;, in the range of small n must bc obtained from a microscopic theory [21]. 

The free energy (eq. (3.2)) includes the contributions of the pressure I> and 

the Gibbs free cnthalpy: F = G - pV. For the pressure follows: 

(3.7) 

while the Gibbs potential G is given by 
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with 

being the chemical potential of a cluster of size n and 

p,, = k,T In : Ai 

(3.8) 

(3.9) 

the chemical potential of the particles of the carrier gas. 

3.2. Entropy und equilibrium cluster distribution 

By means of the free energy (eq. (3.2)) the entropy of the cluster distribu- 

tion N can be derived from eq. (3.1). It results 

= s, + s,, > (3.10) 

where S, stands for the contribution of the cluster distribution and S,, results 

from the carrier gas. WC note that the entropy in eq. (3.10) depends on the 

variables T. V, N. while for the calculation of P”(N) (eq. (2.12)) the function 

S = S(U, V, N) is needed. Therefore, a proper dependence of the temperature 

T on the parameters of the system must be found [22]. 

Using the relation U = F + TS the total internal energy 

bY 
N, 

U= c N,, +iN,,k,T=const. 
II= I 

U can be calculated 

(3.11) 

From eq. (3.11) the dependence of the temperature on the parameters U and 

V and the actual cluster distribution results as follows: 

T(U, V, N) = 
?I- I 

jh,iM,, + ; N,j - 5 N,, 2 
I, = I ,I= I 

With respect to [23] 

P’(T) = P’V,,) ~xP{; (f - $)) , T,, = const. , 
0 

(3.12) 

(3.13) 



q being the particle evaporation heat. we find for the derivative ijf;,/a7’: 

(3.14) 

The terms (i/rrid’T) and (iI<‘<, /dT) arc small compared with the others. 

therefore these expressions are neglected in the following. After insertion of 

cq. (3.14) the temperature of the system is obtained as [22] 

tJ -t c A’,,( (111 - HII’ ‘) 
T(U. V, N) = ‘+ 

fk,,jN,,+ i N,,) + $k,, 5 nN,, ,t- I ri-l 

(3. IS) 

Eq. (3.15) indicates the change of the temperature of the system resulting from 

the cluster formation. But this influence strongly depends on the fraction of the 

carrier gas as will be discussed in section 3.3. 

Inserting the expression T(CJ, V, N) (eq. (3.15)) into that of the entropy 

S(T. V. N) (eq. (3.10)) we arrive finally at the correct function S(U. V, N) to 

calculate the equilibrium probability distribution P”(N). Now WC are able to 

determine the equilibrium cluster distribution N” from the extremum con- 

dition: 

d P”( N ) = d.S(U. V, N) 

iJ N,, i, N,, 
= 0 . II ~2,. , N 

7 I_, \ - (3.16) 
1 1Lh 

where 7‘,<, is the equilibrium temperature in the system. We obtain 

T= T CL, - n=2,. , N,. (3.17) 

with NY = N, - !Z:%’ l rrN:l. Additionally, T,<, = T(N”) is related to the equilib- 

rium cluster distribution by cq. (3.15). Due to these conditions eq. (3.17) is a 

nonlinear system of equations which has to be solved simultaneously. 

Using the notation of the chemical potential p,> (cq. (3.X)), the equilibrium 

solution (3.17) can bc written in the form 

(3.18) 

An integration of eq. (3.18) leads to the known form of a mass action law (211. 
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3.3. Two limit cases 

The thermodynamic investigations allow us to derive two limit cases. Be- 

cause of the relation U = F + TS it yields for an isolated system with the 

constraints (2.1): 

dU = dF + d(TS) = 0. (3.19) 

Further, the entropy consists of two parts describing the contributions of the 

carrier gas and the condensable vapour: 

dS = dS, + dS,, . (3.20) 

We can now discuss the limit cases: 

(i) N,, % N,: In this case the temperature (eq. (3.15)) can be approximated 

bY 

T= T,, = 2Ul3k,N,, = const . (3.21) 

That means the latent heat which is released during the condensation process 

will be transmitted to the carrier gas. It plays the role of the heat bath. 

Therefore we have isothermal conditions. It results from eq. (3.19) that the 

change of the entropy in the isothermal limit can be expressed by dS = 

-(l/T) dF and the equilibrium probability distribution (eq. (2.12)) is now 

given by 

F(T, V, N) 
k T , T = const 

I3 
(3.22) 

(ii) N,,+O: If no carrier gas is present, the latent heat of the condensation 

process leads to an increase of the temperature of the system. It results from 

eq. (3.10): S,,+O in the limit N,,-+O. Therefore. we obtain from eq. (3.20) 

dS = dS, leading to 

P”(N) - cxp N,,-+O. (3.23) 

Thus the nucleation process in the considered binary vapour reduces in the 

limit cases given above either to an isothermal nucleation process in a 

one-component vapour (i) or to an isoenergetic nucleation process in a 

one-component vapour (ii). The real process of the phase transition via 

nucleation and cluster growth takes place between these limit cases. That is the 



reason why we have to consider in general the influence of the carrier gas and 

the change of the temperature in the system. 

4. Kinetics of the phase transition in isolated systems 

4.1. Kinetic ussumptions mu’ muster equation 

Nucleation process means the formation of clusters and their growth and 

shrinkage. The cluster evolution is represented by the time development of the 

distribution N = {N,,. N, . . . N,v }_ In order to discuss this evolution we suppose 

the following assumptions: 

(i) The growth and shrinkage of a cluster is due only to an attachment or 

evaporation of monomers of the condensable vapour. In terms of chemical 

kinetics this process can be represented by the stochastic reactions 

A,,+A,>A,,+,. (4.1) II 

w I and w are the transition probabilities per time unit for the stochastic 

reaction in the given direction. They will be specified afterwards. 

(ii) Interactions between clusters, like coagulations or collisions between 

two or more clusters. arc not taken into account. Also a break of a cluster into 

pieces is not considered. The probabilities of these events should be negligible 

in comparison with the probabilities of the reactions (4.1) [24]. 

(iii) The kinetics of nucleation is assumed a Markovian discrete process. The 

dynamics of the probability P(N, t) to find a certain cluster distribution N at 

time f obeys a master equation: 

dP(N, r) 

i)t 
= z { w(NlN')f(~'. t) ~ w(N'/N)P(N, I)} . (4.2) 

The quantities w(N’IN) are the transition probabilities per unit time for the 

transition from N to N’. N’ specifies those distributions which arc attainable 

from the asssumcd distribution N via the reactions (4.1). 

The stationary solution of the master equation requires that ?JP(N, t) /[jr = 0. 

From this condition we find Y,, J(NIN’) = 0 with J(N]N’) = 

w(N]N’)P(N’, t) - w(N’IN)P(N, t) being the probability flux between the 

states N’ and N. Since the system is not pumped the equilibrium condition is 

given by the more restricted condition of detailed balance. It means .I(N]N’) = 

0 resulting in: 

w(N]N’)P”(N’) = w(N’IN)P”(N) (4.3) 



F. Schweitzer et ul. I Stochastic,? of nucleation in isolated gases 583 

Inserting eq. (2.12) into eq. (4.3) we arrive at: 

w(N(N’) = w(N’IN) exp 
i 

S( I/. v, N) - S( I/, v, N’) 

k, 1. (4.4) 

We find that the transition probabilities w(NIN’) and w(N’IN) are in a strong 

relation due to the knowledge of the equilibrium probability P”(N). Therefore 

only a kinetic assumption for one of the transition probabilities is needed. The 

transition probability for the opposite process can be determined by means of 

eq. (4.4). 

4.2. Transition probabilities 

To determine the transition probabilities for the attachment or the evapora- 

tion of monomers to/from clusters we assume in agreement with previous 

papers [6, 161 that the transition probability of the attachment of a monomer to 

a cluster of size II increases with the surface area of the cluster, with the 

number of clusters of size y1 and with the density of the free particles of the 

condensable vapour. In this way we get for the special process of attachment: 

w(N’IN) = w(N,,, N, - 1 . N,, - 1 N,,,, + 1 . . N,, 1 

N,,, N, . . NJ,, +, . . . N.v\) 

= w;(N,N,,) = a(T)n”‘N,,N,/V, 

I 

N, = N,. - i nN,, . (45) 
,z =2 

We note first that the transition probabilities for the growth of clusters of 

different sizes are correlated, since the number of free particles depends on the 

whole cluster distribution. Therefore, the clusters do not evolve independently. 

This means consequently for the master equation (4.2) that the probability 

P(N, t) does not factorize and the stochastic description will not reduce to a 

number of independent linear random walk processes, as has been discussed in 

refs. [12-141. 

The parameter LY determines the time scale of the stochastic processes. One 

has to consider further the specific properties of the surface, like surface 

tension C, composition of the surface and the sticking coefficient. A proper 

estimation of cy can be derived only from microscopic considerations of the 

event of attachment. 

Assume in a first approximation that the kinetic energy of the free particles 

incorporated into the cluster is larger compared with a certain energy barrier 



AE at the surface which must be overcome: AE < k,,T. In this case we may 

choose 

a(T) = Q,,k,sT 1 (4.6) 

where the proportionality constant (Y(, reflects the conditions at the surface. A 

possible choice of cy,, has been proposed in refs. [22,25] based on a comparison 

with deterministic growth equations: LY,, = D,,c~~/~w. D,, is the diffusion coeffici- 

ent, assumed to be nearly constant. Here arbitrarily N,, = 1 is chosen. 

The transition probability per unit time for the evaporation of one particle 

from a cluster of size y1 can be obtained from cq. (4.4). The calculation of the 

exponent is complicated because both the temperature and the number of free 

particles of the condensable vapour depend on the whole cluster distribution. 

After a careful evaluation of S(U, V. N) ~ S(U. V, N’) and a final transforma- 

tion: N+ N”, N’+ N we obtain the transition probability of evaporation: 

w(N”(N) = w(N,, N, + I . N,, , + 1 N,, - 1 . N,, 1 

N,...N,, ,N ,I... N,.) 

= n’,, (N,, ) 

This transition probability is proportional to the surface area and the number 

of clusters of size y1 again. In the isothermal limit (T = T,,) it agrees with the 

probability of evaporation derived previously 16, lo], and w,) depends only on 

the conditions of the considered cluster. 

For the isoenergetic system the change of the temperature marks an im- 

portant distinction. Since T = T(U. V, N) depends on the whole cluster distri- 

bution the transition probability of evaporation depends implicitly on the 

cluster distribution, too. 

Let us further conclude the distinctions of the transition probabilities com- 

pared with the isothermal case. In dependence on the fraction of the carrier gas 

the temperature should increase during the condensation process due to the 

latent heat released. Therefore, the kinetic energy of the free particles 

increases too. But the transition probability of attachment will not increase at 

all, because the density of free particles reduces due to the formation and 

growth of clusters. 

On the other hand, the transition probability of evaporation strongly dc- 

pends on the temperature via the saturation pressure y’(T) of the condensable 

vapour (eq. (3.13)). Mainly in the limit of a vanishing influence of the carrier 

gas. w- rapidly grows up with an increasing temperature and most of the 

clusters have to evaporate again. 
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This should lead to a modification of the scenario of the phase transition 

which will be discussed in section 5.3. Let us note that the temperature in our 

approach is a global parameter. Therefore, the latent heat released or con- 

sumed during the attachment or evaporation of particles should be immediately 

distributed in the considered volume. For a nucleation process limited by finite 

heat conduction we refer the reader to ref. [lo]. 

5. Discussion 

5.1. Evolution of a single cluster 

In order to explain the given results we discuss the transition probabilities for 

the evolution of a single cluster. For this simple case the transition probabilities 

(eqs. (4.9, (4.7)) reduce to 

w,’ = 
2,3 

ffon N, = N,, - n , 

where the temperature T (eq. (3.15)) is now given by 

T= 
I/ + qn - Bn”” 

$k,N,(l + NJN,,) + k,(n + 5) 

(5.1) 

(5.2) 

(5.3) 

As has been discussed in section 3.3 the ratio No/NV determines whether we 

have isothermal or isoenergetic conditions for the cluster formation. First we 

want to define some reference values. The temperature of the initial system, 

where no cluster exists, can be introduced as follows: 

2u 

T* = 3k,N,(l + N,,/N,) ’ (5.4) 

Further, we introduce the partial supersaturation of the free particles of the 

condensable vapour, which is given by the ratio of the partial pressure p, 

compared with the saturation pressure for the actual temperature: 

PI N,k,,T p=-= 
‘I = p’(T) p’(T)V 

(N, - n)k,T 

p’(T)V 

The initial partial supersaturation y: shall be defined by 

(5.5) 



y:’ 1 
N,k, T”: 

p’(T”)V 
(5.6) 

In order to discuss comparable situations for the cluster formation we assume 

now that the initial temperature T”’ and the initial density of free particles arc 

the same for different ratios A = N,,/N,,. that is the probability of attachment 

W ’ is initially the same for the considered cases. 

Fig. 2 presents the change of the temperature with an increasing cluster size 

for different fractions A of the carrier gas. As discussed &fore, a larger ratio 

of N,,/N,, leads to nearly isothermal conditions for the cluster formation. 

Fig. 3 shows the dependence of the partial supersaturation on the cluster 

size. We find that J, is dropped much more faster in the limit of a vanishing 

rate of the carrier gas. While in the isothermal limit ~1, is reduced only by the 

decrease of free particles during the cluster growth, in the pure one-component 

vapour the increase of 7‘ additionally leads to a strong increase of the 

equilibrium pressure of the system and, therefore. to a stronger dropping 

effect. The decrease of y,, caused by the increase of the temperature. should 

be interpreted as an additional depletion effect which acts in the same direction 

as the depletion of free particles by the cluster growth. This is in agrecmcnt 

with recent thermodynamic investigations of the nucleation process under 

adiabatic conditions [9. 101. 

With rcspcct to the discussion of _Y, and T WC present in fig. 4A and B the 

transition probabilities for the attachment and evaporation of free particles 

to/from the single cluster, assuming again the same initial partial supersatura- 

tion for different values of A = N,,IN,. 

14 
T/T" 

0 
13- b c 

12- 

k.j 

d 

e 
11 - 

f 

1.0 4 _ 
h 

I / / 
0 30 60 90 120 

-----" 

Fip. 2. Temperature T (eq. (5.3)) divided by 7’ = const (eq. (5.4)) in dependence on the cluQet 

si7e II. Parameter: fraction A = N,,IN,: (a) A = 5, (h) A = IO, (c) A = 20. (d) A = 30. (e) A = 50. (f) 
A = 100, (g) A = 300. (h) isothermal T= T’. System volume V= 1.7 X IO ” m’. N, = 150. 7” == 
280 K = const. The specific propcrtics of the vapour are obtained from ethanol. 
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025 

-n 

Fig. 3. Supersaturation yI (eq. (5.5)) divided by v: (eq. (5.6)) in dependence on the cluster size n. 

Parameter: fraction A = N,,/N>: (a) A = 5, (b) A = 20. (c) A = SO, (d) A = 200. For the system 

parameters see fig. 2. 

Compared with fig. 4A the transition probability W+ increases in fig. 4B 

more rapidly with n because of the increase of the temperature. Its decrease 

afterwards is caused by the depletion of the free particles of the condensable 

vapour. The transition probability W- also strongly depends on the increase of 

the temperature via the equilibrium pressure. 

It is shown that depending on the values of the initial supersaturation yr and 

the rate of temperature increase two points of intersection between MJ+ and K 

exist. The condition w,: = w,:,, gives the equilibrium condition for the single 

cluster, resulting from the condition of detailed balance and the extremum 

condition of the equilibrium probability distribution of the single cluster. The 

point of intersection for the smaller value of II determines the critical (instable) 

cluster size, while the point of intersection for the larger value of n gives the 

1 32 63 9d 125 ‘) 32 63 
-----n -” 

Fig. 4A. Fig. 4B. 

Fig. 4. Transition probabilities w,: (eq. (5.1)) and w,, (eq. (5.2)) in dependence on the cluster size 
11. Fig. 4A: A = N,,/N, = 200; fig. 4B: A = NJN, = 20. Parameter: initial supersaturation yI * (eq. 
(5.6)). NJ,: is presented for (a) y: = 12. (b) YT = 8. (c) y: ~ - 4. w,, does not depend on y;” For the 
system parameters see fig. 2. 



stable equilibrium cluster size [20. 2.51. The existence of a stable equilibrium 

between the cluster and the surrounding vapour results from the depletion of 

the free particles in the finite system and from the increase of the equilibrium 

vapour pressure. This has been discussed in previous papers both from a 

thermodynamic and kinetic point of view [9,25, 261. 

In order to obtain a supercritical cluster w ’ must exceed w for a certain 

range of the cluster size n. Figs. 4A, B and 5 demonstrate that the critical 

cluster size increases and the stable cluster size decreases for a decreasing ratio 

A = N,,/N,. That means, the space of supercritical cluster sizes ncr c YI s y1,, 

becomes smaller when an increase of the temperature takes place. Fig. 5 allows 

to find for a given initial supersaturation a critical ratio A,, for the existence of 

a supercritical cluster in the hnitc system. For lower values of the supersatura- 

tion this critical ratio becomes larger. 

5.2. Deterministic cluster growtll 

It is possible to derive from the master equation a Fokker-Planck equation 

for the mean values of the cluster distribution. as has been carried out in 

previous papers for the isothermal case [6, 161. Here WC want to discuss only 

the deterministic velocity of cluster growth and shrinkage being a part of the 

drift term of the Fokker-Planck equation. Neglecting higher correlations this 

deterministic velocity is defined by 

v,, = d(n) ldt = (w,: ~ w,, ) (5.7) 

Inserting the transition probabilities (eqs. (S.l), (5.2)) we find 

---____----- ------ b __---- 

I I I I 
OA;r& l5 150 225 MO 

-A 

Fig. 5. Stable cluster size II<, (solid line) and critical cluster sire ,I~, (dashed line) in dependence on 

the fraction A = N,,/N,. Parameter: initial supersaturation J’; (eq. 5.6): (a) y: = 12, (b) y: =X. 

From the calculations we obtain critical values of A. where the critical and the stable cluster Gacs 

coincide: (a) AL, = X. (I?) A,, = 22. For A < Ah, no supercritical cluster exists. For the system 

parameters xcc Fig. 2. 
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Use of power expansions in eq. (5.8) leads to determinsitic kinetics in the form 

where ( ncr) is the critical cluster size given by 

(5.9) 

(5.10) 

The critical cluster size acts as a selection value. Only clusters with an 

overcritical size are able to grow, undercritical clusters have to disappear again. 

In the initial state where no cluster exists ( ncr) has its smallest value given by 

2 B 
(5.11) 

It should increase during the nucleation process caused by the depletion of the 

vapour and additionally by the increase of the temperature, leading to a 

decrease of the supersaturation y , . The time dependence of the critical cluster 

size can be expressed by the differential equation 

d(nC,)“’ (%J’ 3 1 d(N,) _ 
(Nl) dt ln Y, 

(5.12) 

The time dependence of the free particles of the condensable vapour (N,) and 

of the temperature must be specified in dependence on the evolution of the 

cluster distribution, because both, N, and T, depend on it. Since in the limit of 

a vanishing fraction of the carrier gas an increase of the temperature effects an 

additional depletion, II,, should increase faster compared with the isothermal 

case. 

5.3. Conclusions 

For the whole process of nucleation and growth of clusters in the considered 

system we suppose a scenario of three stages which should qualitatively agree 

with previous results of computer simulations in isothermal-isochoric gases 

L&71: 
(i) A short period of predominant formation of undercritical clusters leading 

to a metastable cluster distribution. 

(ii) The stochastic growth of some of the undercritical clusters to an 

overcritical size after a certain time lag, leading to a period of favoured cluster 

growth, where the supersaturation is decreasing. 



(iii) A 1 on er g p eriod of so-called Ostwald ripening, where the number of 

clusters and the number of bound particles are nearly constant. One of the 

larger clusters survives in a competition process [2S]. its growth to the final size 

occurs by a re-evaporation of the smaller clusters. 

How will this scenario he modified if a decrease of the fraction of the carrier 

gas effects a transition from the isothermal to the isoenergctic nucleation? 

(i) The first period will become much shorter because the partial supcrsatu- 

ration is dropped faster compared with the isothermal case. Due to this effect 

less clusters will reach an overcritical size. 

(ii) The period of favourcd cluster growth will be shortened caused by the 

fast reduction of the supersaturation. 

(iii) The period of Ostwald ripening will be shortened too because less 

supercritical clusters have been formed and the stable cluster size decreases 

with a lower fraction of the carrier gas. 

We can summarize the influence of the carrier gas molecules as follows: 

- Lower fractions of the carrier gas lead to an increase of the temperature 

during the phase transition. Therefore less supercritical clusters will be formed 

and the supersaturation rcduccs more considerably. 

- The stable cluster size depends on the temperature and therefore it can be 

adjusted by means of the fraction of the carrier gas. 

- The formation of supercritical clusters depend both on the supersaturation 

and on the fraction of the carrier gas (cf. e.g. fig. 5). For a given initial 

supersaturation a critical fraction of the carrier gas exists where no supercritical 

cluster can be found. We suppose that a remove of the carrier gas from the 

system will prevent the nucleation process. 
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